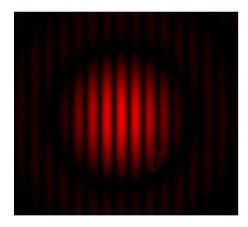
Thème: Ondes et signaux TP C20: Interférences (version professeur)

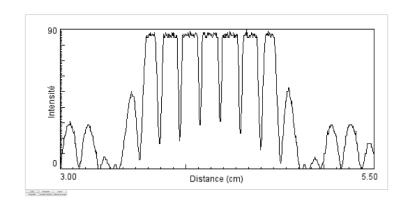
Interférences en lumière monochromatique et polychromatique

B.O. Exploiter l'expression donnée de l'interfrange dans le cas des interférences de deux ondes lumineuses, en utilisant éventuellement un logiciel de traitement d'image.

Interférences en lumière monochromatique et polychromatique

<u>Objectif 1</u>: montrer que la dimension de l'interfrange dépend de la longueur d'onde λ de la lumière.


Partie A : Etude d'une lumière monochromatique.


Expérience:

En utilisant le matériel mis à votre disposition, proposer un protocole expérimental permettant de mettre en évidence le phénomène d'interférences en lumière monochromatique et de mesurer l'interfrange observée par deux méthodes :

- par mesure à la règle sur plusieurs interfranges.
- par utilisation du logiciel SalsaJ (voir mode d'emploi en annexe)

L'image a une largeur réelle de 0,025 m.

Méthode avec une règle :

On mesure à l'écran, une largeur de 62 mm qui correspond à 25 mm en réalité.

6 *i* = 23 mm sur l'écran soit $6i = \frac{23 \times 25}{62} = 9,3$ mm

$$6i = 0,93 \text{ cm}$$

Soit
$$i = \frac{0.93}{1} = 0.16$$
 cm

Soit
$$i = \frac{0.93}{6} = 0.16 \text{ cm}$$

 $\hat{u}_i = \sqrt{2} \times \frac{l}{\sqrt{12}} = \sqrt{2} \times \frac{0.1}{\sqrt{12}} = 0.129 \text{ cm}$

Soit avec « deux » chiffres significatifs par excès :

$$\hat{u}_i =$$
 0,13 cm

$$i = i_{exp} \pm \hat{u}_i =$$
 (0,16 ± 0,13) cm

Méthode avec le logiciel SalsaJ:

On mesure 6i = 4,7564 - 3,7866 = 0,9698 cm

Soit
$$i = \frac{0.9698}{6} = 0.16163$$
 cm

La plus petite graduation du logiciel est
$$l$$
 = 0,0001 cm ! $\hat{u}_i=\frac{l}{\sqrt{12}}=\frac{0,0001}{\sqrt{12}}=2,8868\times 10^{-5}$ cm

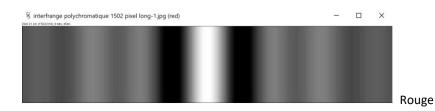
Soit avec un chiffre significatif par excès : $\hat{u}_i = 3 \times 10^{-5}$ cm

$$i = i_{exp} \pm \hat{u}_i = (0.16163 \pm 0.00003) \text{ cm}$$

Conclusion : l'incertitude est très élevée par mesure à la règle. Le résultat est donc peu précis contrairement à celui obtenu avec le logiciel SalsaJ.

Partie B : Etude d'une lumière polychromatique.

Expérience:

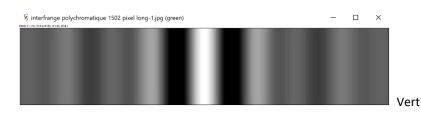

Ouvrir l'image «lumiere_polychromatique.jpg » avec le logiciel SalsaJ.

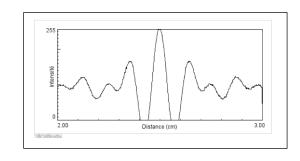
Dans le menu « Image », cliquer sur « Couleurs » puis sur « Séparation R/V/B »

Sur la composante rouge : l'icône « Sélection rectiligne » permet de tracer une ligne de coupe ; l'icône « Coupe » permet d'afficher les variations de l'intensité lumineuse sur cette ligne.

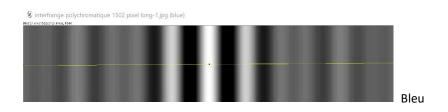
Les trois couleurs ont pour longueur d'onde : λ_{Rouge} : 630 nm λ_{Vert} : 550 nm λ_{Bleu} : 480 nm

- Déterminer, le plus précisément possible, la valeur de l'interfrange *i* mesuré <u>en centimètre</u> pour les trois composantes rouge, verte et bleue.
- Donner les valeurs de l'interfrange sous la forme $i=i_{exp}\pm\hat{u}_i$


255 20 20 1.00 Distance (cm) 6.30

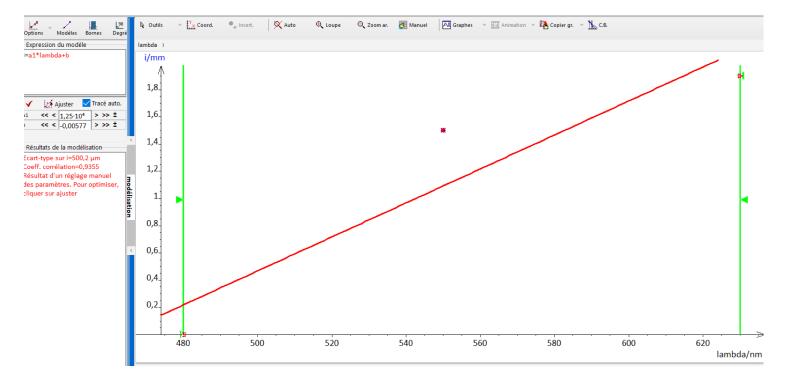

 $I_R = 2,5912 - 2,3981 = 0,19310 \text{ cm}$

 $\hat{u}_i = \frac{0,0001}{\sqrt{12}} = 0,00003 \text{ cm}$


Par arrondi en excès avec un chiffre significatif:

 $I_R = (0.19310 \pm 0.00003)$ cm

 $I_V = 2,5699 - 2,4208 = 0,14910 \text{ cm}$ $I_V = (0,14910 \pm 0,00003) \text{ cm}$



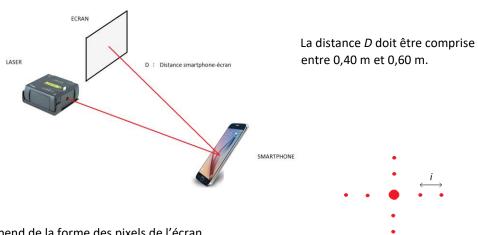
255 0 0 0 Distance (cm) 0.50

 $I_B = 2,2730 -2,2217 = 0,05130 \text{ cm}$ $I_B = (0,05130 \pm 0,00003) \text{ cm}$

Exploitation des résultats:

- 1. Tracer sur le tableur-grapheur Regressi, le graphique $i = f(\lambda)$
- 2. Conclure quant à la relation entre l'interfrange et la longueur d'onde.

L'interfrange est proportionnelle à la longueur d'onde. Les écarts entre les franges sombres sont plus importants pour les grandes longueurs d'onde (rouge).


Partie C : Application.

Objectif 2 : Déterminer la résolution de votre smartphone.

Les écrans de smartphone sont des écrans LCD constitués de pixels (px) très petits. Ces pixels sont eux-mêmes constitués de 3 « sous pixels » : un vert, un bleu et un rouge. En réflexion, ils se comportent avec la lumière comme un réseau optique à deux dimensions.

Description de l'expérience.

Pour déterminer la résolution de l'écran de votre smartphone, on réalise l'expérience schématisée ci-dessous. Le laser émet un faisceau monochromatique de longueur d'onde λ = 633 nm.

La figure obtenue sur l'écran dépend de la forme des pixels de l'écran.

Par exemple deux points séparés par une distance i :

La distance i peut être relié à la distance p séparant les centres de deux pixels de l'écran du smartphone par la relation : $i = \frac{\lambda \cdot D}{p}$ où λ est la longueur d'onde du faisceau laser utilisé. On considérera que les pixels sont accolés.

1 pouce = 2,54 cm

Compléter la fiche technique de votre smartphone :

Résultats expériementaux :

$$\lambda$$
 = 633 × 10⁻⁹ m

Dimensions de l'écran: 0,140 m x 0,070 m

Mesure de l'interfrange : 5i = 2,5 cm soit i = 0,50 cm = 0,0050 m.

$$p = \frac{\lambda \cdot D}{i}$$

$$\iff p = \frac{633 \times 10^{-9} \times \cdot 0,50}{0,0050}$$

$$\iff p = 6.3 \times 10^{-5} \text{ m}$$

$$\Leftrightarrow n = 6.3 \times 10^{-5} \,\mathrm{m}$$

Il y a donc $\frac{0.140}{6.5 \times 10^{-5}} = 2$ 154 pixels sur la longueur et $\frac{0.070}{6.5 \times 10^{-5}} = 1$ 077 pixels sur la largeur

La longueur de l'écran mesure $\frac{14,0}{2.54}$ = 5,51 pouces

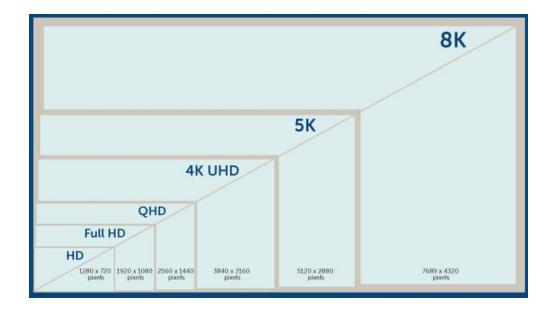
Pour la définition en pixel par pouce, on a par exemple : $\frac{2154}{5.51} = 391$ pixel par pouce

Comparaison avec les données théoriques

Marque et modèle du smartphone : Pocophone

Dimensions de l'écran : 14 cm × 7 cm

Résolution de l'écran : 2 248 px × 1080 px


pixel par pouce: 404 ppp

Format: FULL HD

Calcul du quotient =
$$\frac{404-391}{1} = 13$$

On a un quotient < 20

On peut conclure que les valeurs expérimentales sont assez proches des valeurs théoriques.

1. Pour lancer SalsaJ

• Cliquer l'icône de raccourci « SalsaJ » :

2. Quelques boutons et fonctions associées

3. Pour ouvrir un fichier image

- Effectuer « Fichier » puis « Ouvrir » ou cliquer sur le bouton « Ouvrir un fichier image ».
- Rechercher le fichier en se déplaçant dans l'arborescence.
- · Cliquer sur le fichier désiré puis « Ouvrir ».

4. Pour étalonner l'échelle d'une image

- Tracer un trait entre deux points séparés d'une distance connue. Pour cela, cliquer sur le bouton « Tracer un trait » puis cliquer et glisser entre les deux points.
- Penser à utiliser le zoom avant (clic gauche) au préalable pour gagner en précision. Pour dézoomer faire clic droit
- Dans la barre de menu du logiciel, cliquer « Analyse » et « Indiquer l'échelle... ».
- · Compléter ou modifier les informations dans la fenêtre qui apparaît, cocher « Global » puis cliquer « OUI ».

5. Pour mesurer une distance après étalonnage

- Tracer un trait entre deux points séparés d'une distance d. Pour cela, cliquer sur le bouton « Tracer un trait » puis cliquer et glisser entre les deux points.
- · La valeur s'affiche en haut et droite.

6. Pour obtenir le graphe donnant l'intensité des pixels d'une image le long d'une ligne

- Tracer un trait le long de la ligne désiré. Pour cela, cliquer sur le bouton adapté (voir tableau ci-dessus) puis cliquer et glisser entre les deux points. Penser à utiliser le zoom avant (voir tableau ci-dessus) au préalable pour gagner en précision.
- Dans la barre de menu du logiciel, cliquer « Analyse » et « Coupe ».
- Déplacer le pointeur sur le graphe qui apparaît pour accéder au coordonnée des points.
- Cliquer le bouton « Liste » dans la fenêtre du graphique permet d'accéder aux cordonnées de chaque pixel de la ligne tracée.
- <u>Remarque</u>: la valeur de l'abscisse tient compte de l'étalonnage de l'échelle de l'image si celui-ci a été réalisé au préalable.